Laboratorium Mikroskopii Elektronowej oraz Analiz Materiałowych i Geologicznych

Print Friendly, PDF & Email

Laboratorium
Mikroskopii Elektronowej oraz Analiz Materiałowych i Geologicznych

Laboratorium Mikroskopii Elektronowej, wyposażone w nowoczesną aparaturę badawczą, świadczy usługi w zakresie analiz mikroskopowych w mikro- i nanoobszarach oraz wykonuje specjalistyczne ekspertyzy materiałowe.

Laboratorium realizuje projekty badawcze  oraz zlecenia komercyjne.

GŁÓWNE USŁUGI:

  • obserwacje struktury materiałów i jej składników w szerokim zakresie powiększeń
  • analiza składu fazowego lub chemicznego w mikro- i nanoobszarach
  • badanie struktury oraz składu z rozdzielczością i czułością atomową
  • trójwymiarowe analizy struktury i składu pierwiastkowego materiałów
  • diagnostyka wad produktów i materiałów
  • weryfikacja procesów technologicznych (np. pomiary wielkości cech, analiza warstw powierzchniowych i ich granic)
  • obróbka powierzchni wiązką jonową (np. tworzenie przekrojów poprzecznych)
  • preparatyka próbek (S)TEM: klasyczna i z wykorzystaniem zogniskowanej wiązki jonów galu

MIKROSKOP SEM / FIB – FEI HELIOS NANOLAB 450HP:

Helios

MIKROSKOP SEM / FIB – FEI HELIOS NANOLAB 450HP

Mikroskop skaningowy z kolumnami elektronową i jonową oraz spektrometrem EDS, umożliwiający: obserwacje struktury, w tym z wysoką rozdzielczością i przy niskich napięciach, analizy składu chemicznego, zaawansowaną preparatykę wycinków próbek do badań metodami transmisyjnej mikroskopii elektronowej oraz tworzenie trójwymiarowych obrazów struktury.

MIKROSKOP TEM – FEI Tecnai G2 X-TWIN:

Tecnai

MIKROSKOP TEM – FEI Tecnai G2 X-TWIN

Transmisyjny mikroskop elektronowy z działem LaB6 do badania struktury materiałów z rozdzielczością poniżej 0,25 nm, wyposażony w spektrometr EDS do analizy pierwiastkowej.

MIKROSKOP HRTEM – FEI TITAN3 G2 60-300:

Titan

MIKROSKOP HRTEM – FEI TITAN3 G2 60-300

Wysokorozdzielczy transmisyjny mikroskop elektronowy z działem X-FEG do badań struktury z rozdzielczością poniżej 70 pm, wyposażony w specjalny układ spektrometrów EDS (ChemiSTEM) do analizy pierwiastkowej materiałów na poziomie atomowym. Urządzenie posiada również monochromator wiązki, dwa korektory aberracji sferycznej (wiązki i obrazu) i przystosowane jest do pracy przy napięciach przyspieszających 300, 200, 80 i 60 kV.

W skład laboratorium wchodzi również zestaw urządzeń do konwencjonalnej preparatyki próbek do mikroskopii świetlnej, skaningowej i transmisyjnej.

Zapisz

Zapisz

dr hab. inż. Alicja Bachmatiuk – kierownik laboratorium
e-mail: Alicja.Bachmatiuk@eitplus.pl
tel. +48 71 734 71 66

dr inż. Sebastian Arabasz – starszy specjalista ds. naukowych
e-mail: Sebastian.Arabasz@eitplus.pl
tel. + 48 71 734 71 88

mgr Anna Siudzińska – inżynier procesu
e-mail: Anna.Siudzinska@eitplus.pl
tel. 71 734 71 17

dr Sandeep M. Gorantla – starszy specjalista ds. naukowych
e-mail: Sandeep.Gorantla@eitplus.pl
tel. +48 71 734 72 99

mgr Rafał Kubik – inżynier procesu
e-mail: Rafal.Kubik@eitplus.pl
tel. +48 71 734 71 20

mgr Piotr Kenis – inżynier procesu
e-mail: Piotr.Kenis@eitplus.pl
tel. +48 71 734 71 19

mgr Magdalena Kiss-Arabasz – inżynier procesu
e-mail: Magdalena.Kiss-Arabasz@eitplus.pl
tel. +48 71 734 71 16

mgr inż. Krzysztof Placek – doktorant wdrożeniowy
e-mail: Krzysztof.Placek@eitplus.pl
tel. +48 71 734 72 51

Zespół Laboratorium

Zapisz

POLONEZ 1 Research Grant

National Science Centre, Poland                        

Research Fellow: Dr. Sandeep M. Gorantla
 „Atomic scale study of emerging UV-light LEDs by advanced transmission electron microscopy”

Fundamental research in microstructural investigation and understanding of  emerging p-n-junction AlxGa1-xN based ultra-violet light (UV-light) light emitting diodes (LEDs) by advanced atomic resolution Transmission Electron Microscopy (TEM) to contribute to knowledge generation necessary to improve their efficiency.

POLONEZ 1 Research Grant

National Science Centre, Poland                        

Research Fellow: Dr. Sandeep M. Gorantla
 

 

 

 

 

„Atomic scale study of emerging UV-light LEDs by advanced transmission electron microscopy”

Fundamental research in microstructural investigation and understanding of  emerging p-n-junction AlxGa1-xN based ultra-violet light (UV-light) light emitting diodes (LEDs) by advanced atomic resolution Transmission Electron Microscopy (TEM) to contribute to knowledge generation necessary to improve their efficiency.

The UV-light emitting regions in a typical UV-LED are known as quantum wells. They are the heart of a UV-LED and are just few nanometers (2-3 nm) in thickness. To study such layers aberration corrected S/TEM is the most appropriate choice as it enables to resolve distances of ~ 80 pm and so typical inter atomic spacing of atoms in matter can be analytically characterized.

 About the project

The main objective of this project is to conduct advanced analytical Scanning/Transmission electron microscopy (S/TEM) studies on novel UV-LED devices related structures using the state-of-the-art double Cs aberration corrected FEI Titan3 G2 60-300  TEM in the host institute EIT+ Wrocław Research Centre, Poland.

To achieve the fundamental understanding of these LEDs; firstly pre-LED structures will be synthesized and studied. This will further lead to synthesis of three different full device structures on which full-scale device TEM characterization studies will be performed. The basic scheme of this project strategy is as shown below:

 Simplified schematic of the full device (D) UV-LED structures that are aimed to synthesize and study in this project are as shown below

 

 By advanced analytical S/TEM studies, the main microstructural aspects that will be the focus of study in this project will be

  • The effect of Mg-dopant atoms on the microstructure of the p-type layers of the UV-LED device structures.
  • Inclusion of novel p-type dopant atoms will be investigated.
  • Combination different epitaxial thin-film growth approaches for n-side and p-side ayers of the full LED structure will be studied.
  • Study of the interfaces to understand the defects, microstructural orientational relations at the interfaces and measure thickness of different thin film layers in a UV-LED structure.
  • Study of dislocations, particularly the threading dislocation originating from sspphire substrate and propagating into as grown layers, other microstructural defects and strain in the thin film layers.

 In addition, other relevant characterization techniques such as X-ray Diffraction (XRD), Atomic Force Microscopy (AFM) will be carried in collaboration with other networking partners in the host institute.

In this project, the study will cover all the critical microstructure aspects AlxGa1-xN based UV-LEDs that will enable transferring of the knowledge generated in this project to optimizing the fabrication protocols to improve their currently limited efficiencies.

Background

A UV-LED is a semiconductor light emitting diode which emits lights in the ultraviolet light wavelengths of typically 200 – 400 nm. It is a p- n junction diode to which when electric voltage is applied, electrons recombine with holes, in the active region between p and n layers of the device, and it emits photons (light) through the physical phenomenon of electroluminescence.

Now-a-days it is very apparent that the advancements in solid-state lighting technologies based on LEDs is rapidly transforming the landscape of traditional models of lighting sources. This is evident over a broad spectrum of different realms of the society, from the light bulbs in our homes, outdoor lighting, automotive lighting, to the medical surgery theatres. Besides, LED lighting technologies have further expanded into emitting wavelengths shorter than visible light enabling the feasibility of UV-light LEDs. The emission in shorter wavelength range of 100-280 nm is known as UV-C range. The UV-light radiation with wavelengths of  254 nm or less have disinfecting properties as they are effective in killing bacteria, viruses and other microbes. It is owing to this fact that UV-LEDs hold the promise to replace the currently used mercury lamp UV-light sources as potential candidates for water purification applications. The succession of these conventional mercury lamp UV- light sources with UV-LEDs is highly desired. This is because LEDs sources are more environmentally friendly (non-toxic and low energy dependency), cost-effective, compact, and robust.

At present the practically achievable external quantum efficiency (EQE) of AlxGa1-xN UV-LEDs is in the range 1-2 %. This is much lower than the efficiency of commercially available alternative UV-light sources in the market.The factors (e.g. defects, Mg dopant atom clustering, lattice strain) responsible for limiting their efficiency are known but not yet fully understood at their microstructural level. This fundamental research aims to contribute to the desired further improvement of the UV-LEDs which are at present in their early phase of development.

Cooperation

The project will be carried in cooperation with the host institute collaborating partner Dr. Alicja Bachmatiuk and synthesis of the structures will be performed in collaboration with Prof. Detlef Hommel and his research group at EIT+. Other networking partners are Prof. Anette E. Gunnaes, University of Oslo, Norway.

Financing

This research grant is funded by National Science Centre, Poland through POLONEZ 1 research fellowship funding scheme for 24 months (01’2017 – 12’2018). The registration number of the fellowship is 2015/19/P/ST5/03802.  This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778.

Aleksandra Borek

Opiekun Klienta

dr Aleksandra Borek

tel: +48 510 131 925

aleksandra.borek@eitplus.pl

Zapisz

Zapisz

Zapisz

Autor: Wrocławskie Centrum Badań EIT+, Opublikowano: 11.02.2015
plusfontminusfontreloadfont